Legendre-Chebyshev pseudo-spectral method for the diffusion equation with non-classical boundary conditions
نویسندگان
چکیده
منابع مشابه
Numerical solution of the coupled viscous Burgers equations by Chebyshev-Legendre Pseudo-Spectral method
In this paper, we consider Chebyshev–Legendre Pseudo-Spectral (CLPS) method for solving coupled viscous Burgers (VB) equations. A leapfrog scheme is used in time direction, while CLPS method is used for space direction. Chebyshev–Gauss–Lobatto (CGL) nodes are used for practical computation. The error estimates of semi-discrete and fully-discrete of CLPS method for coupled VB equations are obtai...
متن کاملPseudo-Spectral Method for Space Fractional Diffusion Equation
This paper presents a numerical scheme for space fractional diffusion equations (SFDEs) based on pseudo-spectral method. In this approach, using the Guass-Lobatto nodes, the unknown function is approximated by orthogonal polynomials or interpolation polynomials. Then, by using pseudo-spectral method, the SFDE is reduced to a system of ordinary differential equations for time variable t. The hig...
متن کاملChebyshev–legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws∗
In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order Ds = ( √ 1− x2∂x) is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev–Ga...
متن کاملChebyshev–legendre Spectral Viscosity Method for Nonlinear Conservation Laws∗
In this paper, a Chebyshev–Legendre spectral viscosity (CLSV) method is developed for nonlinear conservation laws with initial and boundary conditions. The boundary conditions are dealt with by a penalty method. The viscosity is put only on the high modes, so accuracy may be recovered by postprocessing the CLSV approximation. It is proved that the bounded solution of the CLSV method converges t...
متن کاملA Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Moroccan Journal of Pure and Applied Analysis
سال: 2020
ISSN: 2351-8227
DOI: 10.2478/mjpaa-2020-0023